PII: S0040-4020(96)00869-1

Enantioselective Cu-Catalyzed 1,4-Addition of Me₃Al to a 4,4-Disubstituted Cyclohexa-2,5-dienone

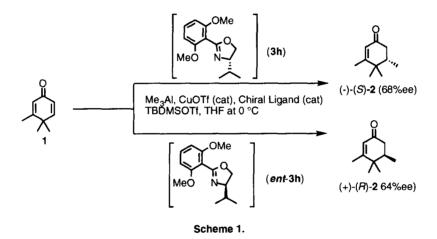
Yoshiji Takemoto, a Satoru Kuraoka, a Naoko Hamaue, Keiichi Aoe, h Hajime Hiramatsu, and Chuzo Iwata*a

^a Faculty of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-Oka, Suita, Osaka 565, Japan

Abstract: A series of chiral enantiomerically pure 2-aryloxazolines was synthesized. (4S)-2-(2',6'-dimethoxyphenyl)-4-isopropyloxazoline proved to be an efficient chiral ligand for the Cu-catalyzed conjugate addition of Me₃Al to cyclohexadienone, and by using 20mol% of this ligand, 1,4-adduct was obtained in 68% ee. In addition, TBDMSOTf is crucial for the asymmetric conjugate addition to proceed with good chemical yield and high ee. Copyright © 1996 Elsevier Science Ltd

INTRODUCTION

Recently, considerable attention has been given to cyclohexa-2,5-dienones as versatile chiral synthons because of their multi-functionality. Although several efficient methods have been developed to introduce chirality into achiral cyclohexa-2,5-dienones, most of these involve the temporary conversion of cyclohexa-2,5-dienones to chiral tricycloadducts by diastereoselective Diels-Alder cycloaddition with chiral cyclopentadiene, and lipase-mediated or Rh(I)(chiral BINAP)-catalyzed asymmetrization of meso-tricycloadduct. There are few methods directly introducing chirality into achiral cyclohexa-2,5-dienones. To the best of our knowledge, only one example of direct chiral induction by Sharpless epoxidation has been reported (80% ee). This stimulated us to investigate other methods for differentiating both the enantiotopic face and group (C=C double bond) of achiral cyclohexa-2,5-dienone. In addition, the resulting 2-cyclohexenones containing chirality at the C5-position are versatile optically active intermediates for biologically active natural products such as solavetivone and cyclointeinone. From these points of view, it would be useful to develop a convenient method for synthesizing chiral 5-substituted-2-cyclohexenones. Accordingly, we undertook study on the catalytic asymmetric conjugate addition of alkylcopper reagents to 1.

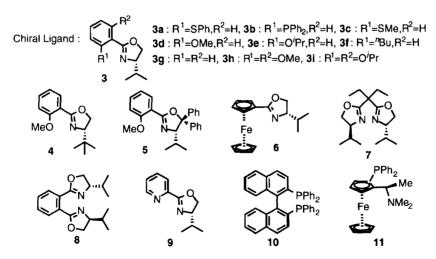

Thus far, both the stoichiometric and catalytic asymmetric conjugate additions of organocuprates to enones, which is currently a topic of interest in asymmetric organic synthesis, have been studied and quite high enantioselectivities have been realized. However, there has been no reported examination of the asymmetric Cu-catalyzed conjugate addition of organometals to cyclohexa-2,5-dienones.

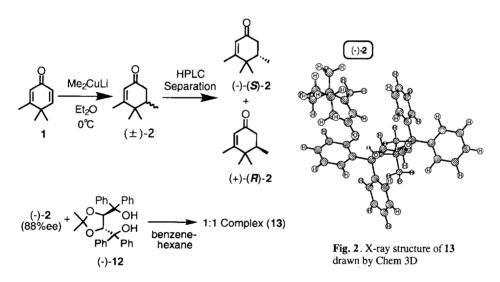
These asymmetric conjugate

^b Analytical Research Laboratory, Tanabe Seiyaku Co., Ltd., 3-16-89 Kashima, Yodogawa-ku, Osaka 532, Japan

additions are divided into two classes depending on the type of organocopper reagent employed: *i.e.*, chirally modified heterocuprates with chiral auxiliaries⁴ and achiral cuprates coordinated by external chiral ligands.⁵ Although we investigated both types of reactions which had been successfully applied to enone-systems, only unsatisfactory results (low chemical yield and poor enantioselectivity) were obtained due to the poor reactivity and steric hindrance of the substrate 1.

On the other hand, Kabbara and Westermann reported the novel Cu-catalyzed conjugate addition of trialkylaluminum (R₃Al) to steric hindered enones and cross-conjugated dienones (steroids) in the presence of silylating reagents. Although the mechanistic details of the R₃Al-mediated conjugate addition have not been identified, we were intrigued by its high reactivity and examined its possibilities in asymmetric conjugate addition. Our initial effort was directed toward the search for efficient chiral ligand which can combine or coordinate to presumed active species (RCu). We evaluated a variety of chiral oxazolines 3-5, successfully used in enantioselective Pd-catalyzed allylic alkylation, and some other types of ligands 6-11 (Fig.1).




Fig. 1. Chiral ligands 3-11 using in the enantioselective Cu-catalyzed 1,4-addition of Me₃Al to cyclohexadienone 1

Furthermore, we investigated the reaction conditions concerning additives, reaction temperature and solvent to optimize both the chemical yield and ee. Consequently, an optically active 1,4-adduct (-)-2 was obtained in 68% ee by using a catalytic amount of a new ligand 3h in the presence of 120 mol% of *tert*-butyldimethylsilyl triflate (TBDMSOTf) (Scheme 1). We describe here the effect of the aromatic substituents (R¹ and R²) of 3a-i and the role of trialkylsilyl triflate in achieving the enantioselectivity of asymmetric Cu-catalyzed conjugate addition to 1.8

RESULTS AND DISCUSSION

Preparation of (+)-(R)- and (-)-(S

The chiral authentic samples of both (+)-(R)-2 and (-)-(S)-2 were obtained by 1,4 addition of Me₂CuLi to 3,4,4-trimethylcyclohexa-2,5-dienone $\mathbf{1^9}$ in Et₂O and sequential HPLC separation by Daicel CHIRALPAK AS. The absolute configuration of (-)-2 was determined to be 5S by a single X-ray crystallographic analysis of a 1:1 complex of (-)-trans- α , α -(2,2-dimethyl-1,3-oxolane-4,5-diyl)bis(diphenylmethanol) 12 and (-)-2 according to Toda's method $\mathbf{1^0}$ (Scheme 2, Fig. 2).

Scheme 2. Preparation of (S)-2, (R)-2 and 1:1 complex 13

Synthesis of chiral 2-(2'- or 2', 6'-substituted-phenyl)oxazolines

The syntheses of various chiral 2-(2'- and 2',6'-substituted-phenyl)oxazolines are shown in Scheme 3. 2-(2'-Methoxyphenyl)oxazolines 3d, 4 and 5 were prepared according to the method of Balm. The ZnCl2-catalyzed condensation of 2-hydroxybenzonitrile 14 with appropriate chiral amino alcohols afforded the corresponding oxazolines 15, of which the phenolic hydroxy groups were methylated with methyl iodide and KOH to give 3d, 4 and 5 in 36-94% yields. The 2-(2'-isopropoxyphenyl)oxazoline 3e and 2-(2'-butylphenyl)oxazoline 3f were prepared from 2-(2'-fluorophenyl)oxazoline 16¹³ and 3d by treatment with sodium isopropoxide and butylmagnesium chloride, respectively. The 2-(2',6'-dialkoxyphenyl)oxazolines 3h, ent-3h, 3i were prepared from appropriate acid chlorides 17a-b via the corresponding amides 18 according to the modified method of Denmark. Exposure of 18 to the mesylation with MsCl and Et₃N at room temperature promoted the cyclization of the mesylates into a oxazoline ring in one pot to give the desired oxazolines 3h, ent-3h and 3i in good yields. In this way, starting from commercially available amino alcohols, differently

Scheme 3. Synthesis of Chiral 2-(2'- and 2',6'-Substituted-phenyl)oxazolines

substituted ligands were readily accessible in enantiomerically pure form. Finally, the other known chiral ligands 3a, $^{7b}3b$, $^{13}3c$, $^{13}3g$, $^{13}6$, $^{16}7$, $^{15}8^{11}$ and 9^{11} were prepared as previously reported, and (+)-(R)-2, 2 -bis(diphenylphosphino)-1, 1'-binaphthyl [(+)-(R)-BINAP] 10 and (+)-(S)-N, N-dimethyl-1-[(R)-2-(diphenylphosphino)ferrocenyl] ethylamine [(S)-(R)-PPFA] 11 were purchased from Kanto Chemicals.

Asymmetrization of 1 by the Cu-catalyzed conjugate addition of R₃Al

We first investigated the asymmetric Cu-catalyzed conjugate addition of R₃Al in the presence of 20 mol% of phenylthio- or diphenylphosphino-oxazolines 3a and 3b, which had been successfully used in the enantioselective Pd-catalyzed allylic alkylation as bidentate ligands (Table 1). The reactions were carried out with Me₃Al (110 mol%), copper(I) bromide (1 mol%), and 3a or 3b (20 mol%) in the presence of various additives. Contrary to zinc chloride and lithium bromide which inhibited the reaction, 120 mol% of trimethylsilyl chloride (TMSCI) effectively promoted the reaction rate. However, Me₂AlCl, which should be produced in the course of the reaction if TMSCl is used as the additive, decreased the ee of the conjugate addition (entries 1-6). Therefore, we employed trimethylsilyl triflate (TMSOTf), possessing higher Lewis acidity and no halogen atom, as a counter anion instead of TMSCI. In practice, TMSOTf had a beneficial effect on enantioselectivity and gave (-)-(S)-2 in 14-48% ee, depending on the reaction temperature (entries 7-9). In addition, the enantioselectivity further increased to 63% ee when the reaction was carried out at 0°C in the presence of TBDMSOTf (entry 11). While increasing the amount of TBDMSOTf (200 mol%) had no effect on the ee (entry 12), an increased amount of Me₃Al (200 mol%) improved both the chemical yield and ee of (-)-(S)-2 (entry 10). Moreover, an increased amount of CuBr (5 mol%) improved only the chemical yield with a negligible loss of ee (entry 13), and changing Cu(I) salt from CuBr to CuOTf significantly affected the chemical yield but not enantioselectivity (entry 14). The ee was dramatically decreased when the ratio of lignd/CuOTf was reduced to less than 4/1 (entries 14-17). Unfortunately, the asymmetric conjugate addition of Et₃Al to 1 gave the corresponding ethyl adduct only with poor enantioselectivity even under the optimized conditions (entry 18).

Enantioselective 1.4-addition of Me₃Al to 1 with TBDMSOTf in the presence of various oxazolines

Since asymmetrization of 1 by the Cu-catalyzed conjugate addition with the chiral oxazoline 3a was revealed to be possible, we further examined the efficiency of other chiral ligands (3c-i and ent-3h) to clarify the mechanism of this asymmetric conjugate addition as well as to increase both the chemical yield and ee (Table 2). As switching the thiophenyl group of 3a to a thiomethyl group had no effect on enantioselectivity (3c: entry 1),

Table 1. Optimization of Cu-Catalyzed Asymmetric Conjugate Addition of R₃Al to Cyclohexadienone 1 in the Presence of the Chiral Oxazolines 3a or 3b: Effects of the Additive,

Temperature, and Copper Salt^a

Entry		R ₃ Al	CuX	Additive	R ₃ Al/CuX/	Temp.	Time	Yield ^b	ϡ
		(R)			Ligand/Additive	℃	hr	%	%
1	3a	Me	CuBr	none	1.1/0.01/0.2/0.0	rt	23	11	5
2	3a			$ZnCl_2$	1.1/0.01/0.2/1.2	rt	24	(no rea	ction)
3	3a			LiBr	1.1/0.01/0.2/1.2	nt	24	(no reaction)	
4	3a			Me ₂ AlCl	1.1/0.01/0.2/1.2	rt	22	15	0
5	3a			TMSCl	1.1/0.01/0.2/1.2	rt	5	39	8
6	3b			TMSCI	1.1/0.01/0.2/1.2	rt	22	28	0
7	3a			TMSOTf	1.1/0.01/0.2/0.0	rt	2	37	37
8	3a			TMSOTf	1.1/0.01/0.2/1.2	0	5	28	48
9	3a			TMSOTf	1.1/0.01/0.2/1.2	-20	5	61	14
10	3a			TMSOTf	2.0/0.01/0.2/1.2	0	2	46	56
11	3a			TBDMSOTf	2.0/0.01/0.2/1.2	0	2	35	63
12	3a			TBDMSOTf	2.0/0.01/0.2/2.0	0	3	28	52
13	3a			TBDMSOTf	2.0/0.05/0.2/1.2	0	1.5	59	54
14	3a		CuOTf ^d	TBDMSOTf	2.0/0.01/0.2/1.2	0	2	53	63
15	3a			TBDMSOTf	2.0/0.05/0.2/1.2	0	2	66	59
16	3a			TBDMSOTf	2.0/0.05/0.1/1.2	0	2	42	42
17	3a			TBDMSOTf	2.0/0.05/0.05/1.2	0	2	46	8
18_	3a	_ Et		TBDMSOTf	2.0/0.05/0.2/1.2	0	_ 2	24	_17

^a All reactions were carried out in dry THF. ^b Isolated yield. ^c Determined by HPLC analysis [Daicel CHIRALPAK AS, hexane/2-propanol≈7/3, 0.5 ml/min at 35 °C, (+)-(R)-2 43.0 min, (-)-(S)-2 56.2 min]. ^d Cu(I) · 1/2C₆H₆ complex was used.

we next investigated the effect of the aromatic substituents of the ligands 3d-f to identify the role of the sulfur atom by changing the coordination ability of the chiral ligand. By using 2-(2'-methoxyphenyl)oxazoline 3d, the chemical yield remarkably increased while optical yield decreased (entry 2). However, the optical yield was restored by use of 2-(2'-isopropoxyphenyl)oxazoline 3e, a more sterically hindered ligand, without any loss ofthe reactivity (entry 3). We presumed that this augmentation of reactivity in the conjugate addition was attributable to the electric factor of the 2'-alkoxy groups. Interestingly, similar chiral induction was observed with 2-(2'-butylphenyl)oxazoline 3f but not 2-phenyloxazoline 3g which possesses no substituent on the aromatic ring (entries 4 and 5). In general, 2-(2'-heteroatom-substituted-phenyl)oxazolines are considered to coordinate to transition metals (Pd, Ni, Cu, etc.) as bidentate ligands. However, considering that the alkoxyand alkyl-substituted chiral ligands 3d-f showed a similar ee, 3a-e seem to work as monodentate ligands. That is, the substituent (R¹) in these ligands may not participate in coordination to the copper(I) atom, but may provide conformational restriction of the transition state via steric factors. Expecting a more restricted transition assembly, we performed the reaction with new chiral ligands, 2-(2',6'-disubstituted-phenyl)oxazolines 3h-i. The reaction with 3h gave (-)-(S)-2 in 88% yield with a maximum ee of 68% (entry 6), while use of 3i, a more

Table 2. Asymmetric Conjugate Addition of Me₃Al to 1 with Various Chiral Oxazoline Ligands^a

Entry	Ligand	Solvent	Time / hr	Yield*/%	ee / %°
1	$3c (R^1=SMe, R^2=H)$	THF	1	39	63
2	3d $(R^1=OMe, R^2=H)$	THF	0.5	88	45
3	$3e (R^1=O/Pr, R^2=H)$	THF	0.5	70	59
4	$3f (R^1 = ^n Bu, R^2 = H)$	THF	2	48	46
5	$3g (R^1 = R^2 = H)$	THF	1	61	0
6	$3h (R^1=R^2=OMe)$	THF	1	88	68
7		AcOEt	0.5	57	51
8		Et ₂ O	0.5	48	29
9	ent-3h ($R^1=R^2=OMe$)	THF	0.5	79	64
10	3i $(R^1=R^2=O'Pr)$	THF	4	62	63

^a Me₃Al/CuOTf·1/2C₆H₆/ligand/TBDMSOTf/1 = 2.0/0.05/0.2/1.2/1.0 at 0°C. ^b Isolated yield ^c Determined by HPLC analysis [Daicel CHIRALPAK AS].

Fig. 3. Mechanism for Cu-Catalyzed 1,4-Addition of Me₃Al in the Presence of TBDMSOTf

sterically hindered ligand, gave no improvement (entry 10). With regard to the reaction solvent, enantioselectivities decreased in the sequence: THF > $AcOEt > Et_2O$ (entries 6-8). Whereas (-)-(S)-2 was always obtained as the major product when (4S)-isopropyloxazolines were used as a chiral ligand, the reaction with ent-3h gave (+)-(R)-2 with a compatible ee value but a reverse sense (entry 9). This result strongly indicates that the induction of chirality in the asymmetric conjugate addition originates from the C4-chirality of the oxazoline ligands.

The postulated reaction mechanism of the asymmetric conjugate addition

We have clarified the following facts in our investigation.

- a) The oxazoline ring plays a crucial role in the coordination to copper catalysis.
- b) The chiral induction of the asymmetric conjugate addition to 1 originates from the chirality of the alkyl-substituted C4-position of the oxazoline ring.
- c) Use of TBDMSOTf as an additive gives the best ee value (up to 68% ee).
- d) ortho-Substituents of the aromatic ring in 2-aryloxazoline ligand are crucial for good ee.

The transition state model in Fig. 3 may explain the enantiofacial differentiation in the present asymmetric conjugate addition. ¹⁷ At first, MeCu(L)_n would be formed by addition of Me₃Al to a mixture of CuOTf and the ligand (L). Then, dienone 1 coordinates to this complex reversibly to generate a non-reactive MeCu(dienone)(L)_{n-1} complex, which gives no 1,4-addition adduct at 0°C without TBDMSOTf. From the steric consideration by model study, 1 may predominantly approach from the upper-right face of the MeCu(L)_n (model A) due to steric hindrance of the C4-isopropyl group and the C2-aryl ring of the ligand. Therefore, by adding TBDMSOTf to the reaction mixture, the activated dienone and copper π -complex (A) would be formed as major products, and then the TBDMS enol ether of (-)-(S)-2 is obtained predominantly together with the regeneration of CuOTf(L)_n. Although interaction of the triflate anion with the copper atom may help to make the transition state more rigid, effect of the trialkylsilyl groups on ee is not clear from the experimental results.

Other Chiral Ligands

The results with other types of chiral ligands are shown in Table 3. As regards the effect of the C4-substituent of the oxazoline ring, the ee value increased a little by replacing the isopropyl group with a *tert*-butyl group 4 (entries 1,2). Although the use of other ligands 5-11 gave no improved results (entries 3-8), an interesting result was demonstrated in the cases of ligands 6-9, where the senses of chirality induced in the conjugate addition were reversed notwithstanding that all of these chiral ligands had been derived from the same amino alcohol (entries 3-6).

Table 3.	Asymmetric C	Conjugate Ac	ddition of N	Ae₃Alto (Cyclohexadienone 1	with	Various
Chimal Line	ndo 4 1 14						

Entry	Ligand	Time / hr	Yield ^b / %	S/R (ee / %)°
1	4	4	49	75/25 (50)
2	5	3.5	20	68/32 (36)
3	6	1	50	45/55 (11)
4	7	2	46	46/54 (8)
5	8	1	13	67/33 (33)
6	9	1	33	44/56 (12)
7	10		(no reaction)	, ,
8	11		(no reaction)	

^a Me₃Al/CuOTf·1/2C₆H₆/ligand/TBDMSOTf/1 = 2.0/0.05/0.2/1.2/1.0 in THF at 0°C. ^b Isolated yield. c Determined by HPLC analysis [Daicel CHIRALPAK AS, hexane/2-propanol=7/3, 0.5 ml/min at 35°C.

CONCLUSION

In summary, we have achieved the first Cu-catalyzed asymmetric conjugate addition of trialkylaluminum to 3,4,4-trimethylcyclohexa-2,5-dienone in the presence of 2-aryloxazoline as a catalytic chiral ligand and TBDMSOTf as an additive. We have clarified here the effect of the aryl substituents of the chiral oxazolines and the role of TBDMSOTf in achieving the enantioselectivity in our asymmetric conjugate addition reaction. Although the ee's are still unsatisfactory (up to 68% ee), the mild conditions, ease of preparation and stability of the chiral ligand are all very encouraging. Also, this process is superior in that it is free of ecological hazards due to the use of catalytic amounts of transition metals and the avoidance of additives such as HMPA or TMEDA. Further examination of the use of new catalysis and mechanistic studies are underway in our laboratory to achieve a much higher ee. In addition, we have succeeded in applying this asymmetric conjugate addition to the total synthesis of (-)-solavetivone.¹⁸

Acknowledgments. We are grateful to Dr. T. Date and Mr. K. Okamura (Analytical Research Laboratory, Tanabe Seiyaku Co., Ltd.) for a measurement of CD spectra of (+)-(R)-2 and (-)-(S)-2.

EXPERIMENTAL

General: Melting points are uncorrected. IR spectra were obtained using a Horiba FT-210 and Shimadzu IR-420 spectrometer. ¹H-NMR spectra were obtained using a JEOL JNM-GX-500 (500MHz), Varian VXR-200 (200MHz) and Bruker AC-200 (200MHz) spectrometer. ¹³C-NMR spectra were obtained using a JEOL JNM EX-270 (67.8MHz) and Bruker AC-200 (50.3MHz) spectrometer. Optical rotations were measured with a JASCO DIP-360 polarimeter. Mass spectra (MS) were measured with a Shimadzu GCMS-QP-1000 and HITACHI M-2000A spectrometer. High resolution mass spectra (HI-MS) were measured with a JEOL JMS-D300 spectrometer. HPLC analysis of 2 was carried out on a Shimadzu LC-6A with a Shimadzu SPD-6A UV detector (set at 254 nm) equipped with a Daicel CHIRALPAK AS (4.6×250 mm). Each enantiomers of 2 was separated by TOSOH CCPP-M HPLC system equipped with a Daicel CHIRALPAK AS. X-ray crystallographic analysis was performed using a RIGAKU AFC-5R diffractometer. Circular dichroism spectra (CD) were obtained using a JASCO J-720W spectropolarimeter. (S)-(+)-, (R)-(-)-2-Amino-3-methyl-1-butanol, and (S)-(+)-2-amino-3,3-dimethyl-1-butanol were purchased from Aldrich. (S)-(+)-2-amino-3-methyl-1,1-diphenyl-1butanol was prepared from L-Val-OMe·HCl according to the literature. 19 2,6-Dimethoxybenzoyl chloride was purchased from Aldrich. 2,6-Di-isopropoxybenzoyl chloride was prepared from 2,6-dihydroxybenzoic acid according to the literature. 20 Column chromatography was carried out using Merck Kieselgel 60. All dry solvents were obtained from Kanto Chemicals.

 (\pm) -3, 4, 4, 5-Tetramethy lcy clohexa-2-en-1-one $[(\pm)$ -2]. To a suspension of copper(I) iodide (380 mg, 2.0 mmol) in dry Et₂O (2 ml) was added dropwise a 1.6 M Et₂O solution of methyllithium (2.9 ml, 4.0 mmol) at

0°C under a nitrogen atmosphere. After being stirred at 0°C for 20 min, 3,4,4-trimethylcyclohexa-2,5-dien-1-one 1 (136 mg, 1.0 mmol) was added at 0°C to the mixture and the stirring was continued for additional 10 min. The mixture was quenched with a saturated aqueous NH₄Cl solution at 0°C, and then allowed to warm to room temperature. After the resulting mixture was filtered through a pad of Celite and solid residue was washed with Et₂O, the collected extracts were washed with a saturated aqueous NaCl solution, dried with anhydrous MgSO₄ and then concentrated in vacuo. The residue was purified by SiO_2 column chromatography (hexane/AcOEt = 5/1) to give the enone (±)-2 (131 mg, 86%) as a colorless oil. IR (film): 1671 (C=O), 1620 (C=C) cm⁻¹; ¹H-NMR $(500MHz, CDCl_3)$: $\delta 1.00 (d, 3H, J = 6.8 Hz, C5-Me)$, 1.04 and 1.17 (s, 3H x 2, C4-Me), 1.93 (s, 3H, C3-Me), 2.01-2.06 (m, 1H, C5), 2.24 (dd, 1H, J = 17.1 and 11.1 Hz, C6), 2.40 (dd, 1H, J = 17.1 and 4.3 Hz, C6), 5.79 (s, 1H, C2), ¹³C-NMR (67.8 MHz, CDCl₃): δ 16.0 and 20.0 (C4-Me x 2), 20.4 (C3-Me), 25.0 (C5-Me), 38.7 (C4), 39.2 (C5), 42.4 (C6), 126.3 (C2), 169.3 (C3), 199.1 (C1), MS: 153 (10, M*+1), 152 (24, M⁺), 110 (100), 95 (67), 83 (67), 67 (53), 41 (83), HI-MS: calcd for C₁₀H₁₆O: 152.1199, found: 152.1198. (+)-(R)- and (-)-(S)-3, 4, 4, 5-Tetramethylcyclohexa-2-en-1-one 2. $(\pm)-2$ (100 mg) was purified by HPLC to give 39 mg (39%) of (+)-(R)-2 and 42 mg (42%) of (-)-(S)-2. [HPLC separation conditions: Daicel CHIRALPAK AS, hexane/2-propanol = 5/5, flow rate 0.8 ml/min, column temperature 35°C, $t_{\rm B}[(+)-(R)-2]$ = 11.4 min, $t_{\mathbf{R}}[(-)-(S)-2] = 13.9$ min]. (+)-(R)-2: a colorless oil. $[\alpha]_{\mathbf{D}}^{26} + 102$ (c = 0.53, CHCl₃)(>99% ee by HPLC). CD (3 mM in MeOH); $\Delta \varepsilon = +0.32$ (328 nm, $n \rightarrow \pi^*$ cotton effect). (-)-(S)-2; a colorless oil. $[\alpha]_n^{24}$ -92.0 (c = 0.57, CHCl₃)(88% ee by HPLC). CD (3 mM in MeOH); $\Delta \varepsilon = -0.28$ (328 nm, n $\rightarrow \pi$ * cotton effect). 1:1 Complex of (-)-(S)-3, 4, 4, 5-tetramethylcyclohexa-2-enone 2 and (-)-trans- α , α '-(2, 2dimethyl-1,3-dioxolane-4,5-diyl)bis(diphenylmethanol) 12 (13). To (-)-12 (35 mg, 0.074 mmol) in benzene (2 ml) was added (-)-(S)-2 (11 mg, 0.074 mmol) in hexane (2 ml). The mixture was kept at room temperature for 24 h to give 36 mg (78%) of 13 as colorless prisms. mp 143-144°C (benzene/hexane). $[\alpha]_D^{18}$ -60.8 (c = 0.13, CHCl₃)(>96% ee by HPLC). IR (KBr): 3265 (OH), 1639 (C=O) cm⁻¹; ¹H-NMR (200MHz, CDCl₃): δ 0.99 (d, 3H, J = 6.8 Hz, C5-Me), 1.04 (s, 3H x 3, C4-Me and oxolane-Me x 2), 1.17 (s, 3H, C4-Me), 1.93 (d, 3H, J = 1.2 Hz, C3-Me), 1.95-2.10 (m, 1H, C5), 2.19 (dd, 1H, J = 16.8 and 10.6 Hz, C6), 2.41 (dd, 1H, J = 16.8 and 4.7 Hz, C6), 3.88 (br-s, 2H, OH x 2), 4.60 (s, 2H, oxolane-CH x 2), 5.80 (s, 1H, C2), 7.23-7.38 (m, 16H, ArH), 7.51-7.55 (m, 4H, ArH), Andl. Calcd. for C₄₁H₄₆O₅ · 1/10H₂O: C; 79.35, H; 7.50. Found: C; 79.12, H; 7.24.

X-Ray crystallographic analysis of 13. Crystal data for $13: C_{41}H_{46}O_5$, M.W. = 618.78, a = 10.204(1), b = 35.041(1), c = 9.673(1), U = 3458.5(5)A³, space group: $P2_12_12_1$, Z = 4. The crystal structure was solved by the direct method using SHELXS-86²¹ program. Full matrix least-squares refinement of positional and thermal parameters led to the final convergence with R = 0.036 (Rw = 0.075) using SHELXL-93. The absolute configuration (5S) of (-)-2 was determined from the known absolute configuration of (-)-12. Atomic coordinates and temperature factors, bond distances and angles have been deposited at the Cambridge Crystallographic Data centre.

Synthesis of mono-alkoxyphenyloxazolines 3d, 4 and 5. General procedure:

(4S)-2-(2'-Methoxyphenyl)-4-is opropyloxazoline (3d). The mixture of 2-hydroxybenzonitrile 14 (1.19 g, 10.0 mmol), (S)-(+)-2-amino-3-methyl-1-butanol (1.7 ml, 15.0 mmol), $ZnCl_2(0.21 g, 1.0 mmol)$, and chlorobenzene (12 ml) was refluxed for 20 h. After removal of the solvent *in vacuo*, the residue was purified by SiO_2 column chromatography (hexane/AcOEt = 9/1) to give (4S)-2-(2'-hydroxyphenyl)-4-isopropyloxazoline 15a (1.96 g, 96%) as a colorless oil. To a suspension of a powdered KOH (274 mg, 4.9 mmol) and 15a (250 mg, 1.2 mmol) in DMSO (1 ml) was added methyl iodide (0.15 ml, 2.4 mmol) at room temperature. After being stirred for 20 min at room temperature, the mixture was poured into ice water and extracted with AcOEt. The organic layer was washed with a saturated aqueous NaHCO₃ solution and a saturated aqueous NaCl solution, dried with anhydrous MgSO₄, and then concentrated *in vacuo*. The residue was purified by SiO_2 column chromatography (hexane/AcOEt = 2/1) to give 3d (261 mg, 98%) as a pale yellow viscous oil. $[\alpha]_D^{24}$ -50.8 (c = 0.90, EtOH). IR (film): 1650 (C=N) cm⁻¹. ¹H-NMR (200MHz, CDCl₃): δ 0.94 and 1.04 (d, 3H x 2, J = 6.8 Hz, ¹Pr-Me), 1.94 (sept, 1H, J = 6.8 Hz, ¹Pr-CH), 3.90 (s, 3H, OMe), 4.13-4.22 (m, 2H, C4 and C5), 4.32-4.46 (m, 1H, C5), 6.93-7.01 (m, 2H, ArH), 7.37-7.46 (m, 1H, ArH), 7.73 (dd, 1H, J = 8.0 and 1.9 Hz, ArH).

- ¹³C-NMR (50.3MHz, CDCl₃): δ 18.0 and 18.9 (Me x 2), 32.7 (¹Pr-CH), 56.1 (OMe), 69.6 (C5), 72.7 (C4), 111.9 (C3'), 117.6 (C1'), 120.3 (C5'), 131.3 (C6'), 132.0 (C4'), 158.4 (C2'), 162.2 (C2). MS: 220 (7, M⁺+1), 219 (15, M⁺), 206 (35), 176 (72), 148 (15), 135 (100), 121 (14). *Anal.* Calcd for $C_{13}H_{17}NO_2 \cdot 1/10H_2O$: C; 70.63, H; 7.84, N; 6.34. Found: C; 70.60, H; 7.94, N; 6.34.
- (4S)-2-(2'-Methoxy pheny l)-4-tert-buty loxazoline (4). 4 was prepared from 14 (775 mg, 6.5 mmol) and (S)-(+)-2-amino-3,3-dimethyl-1-butanol (762 mg, 6.5 mmol) via 15b by the same procedure described for 3d. The obtained residue was purified by SiO₂ column chromatography (hexane/AcOEt = 4/1) to give 4 (1.01 g, 67%) as colorless prisms. mp 41-42°C (hexane). $[\alpha]_D^{24}$ -18.8 (c = 0.25, EtOH). IR (film): 1653 (C=N) cm⁻¹.

 1H-NMR (200MHz, CDCl₃): δ 0.95 (s, 9H, 'Bu), 3.79 (s, 3H, OMe), 3.92-4.32 (m, 3H, C4 and C5), 6.85-6.95 (m, 2H, ArH), 7.29-7.37 (m, 1H, ArH), 7.68-7.73 (m, 1H, ArH),.

 13C-NMR (50.3MHz, CDCl₃): δ 25.8 ('Bu-Me x 3), 33.9 ('Bu), 55.9 (OMe), 68.3 (C5), 76.3 (C4), 111.9 (C3'), 118.0 (C1'), 120.2 (C5'), 131.2 (C6'), 131.9 (C4'), 158.4 (C2'), 162.3 (C2). MS: 234 (3, M*+1), 233 (5, M*), 176 (100), 148 (20), 121 (20). Anal. Calcd for C₁₄H₁₉NO₂: C; 72.07, H; 8.21, N; 6.00. Found: C; 71.98, H; 8.06, N; 5.96.
- (4S)-2-(2'-Methoxyphenyl)-4-is opropyl-5, 5-diphenyloxazoline (5). 5 was prepared from 14 (306 mg, 2.6 mmol) and (S)-(+)-2-amino-3-methyl-1,1-diphenyl-1-butanol (655 mg, 2.6 mmol) via 15c by the same procedure described for 3d. The obtained residue was purified by SiO₂ column chromatography (hexane/AcOEt = 5/1) to give 5 (280 mg, 36%) as a pale yellow viscous oil. $[\alpha]_D^{25}$ -300 (c = 1.37, CHCl₃). IR (KBr): 1656 (C=N) cm⁻¹; ¹H-NMR (200MHz, CDCl₃): δ 0.67 and 1.04 (d, 3H x 2, J = 6.8 Hz, ⁱPr-Me), 1.62-1.87 (m, 1H, ⁱPr-CH), 3.90 (s, 3H, OMe), 4.81 (d, 1H, J = 4.4 Hz, C4), 6.96-7.06 (m, 2H, ArH), 7.24-7.48 (m, 9H, ArH), 7.57-7.62 (m, 2H, ArH), 7.77-7.82 (m, 1H, ArH). ¹³C-NMR (67.8MHz, CDCl₃): δ 17.0 and 22.0 (Me x 2), 30.4 (ⁱPr-CH), 56.1 (OMe), 80.1 (C4), 92.4 (C5), 112.4 (C3'), 118.6 (C1'), 120.4 (C5'), 126.5, 127.0, 127.2, 127.5, 127.6, 128.1, 131.3, 131.9, 141.2, 146.1 (Ar-C), 158.9 (C2'), 160.7 (C2). MS: 371 (M⁺, 0.2), 356 (0.1), 189 (10), 174 (20), 119 (22). Anal. Calcd for C₂₅H₂₅NO₂: C; 80.83, H; 6.78, N; 3.77. Found: C; 80.70, H; 6.79, N; 3.77.
- (4S)-2-(2'-Isopropoxyphenyl)-4-isopropyloxazoline (3e). To a suspension of 62.5% NaH in mineral oil (200 mg, 5.2 mmol) in THF (9 ml) was added dropwise 2-propanol (0.4 ml, 5.2 mmol) at 0°C and the resulting mixture was refluxed for 30 min under a nitrogen atmosphere. After the solution was cooled to room temperature, a solution of (4S)-2-(2'-fluorophenyl)-4-isopropyloxazoline 16 (360 mg, 1.7 mmol) in THF (1 ml) was added to the mixture, and the whole was refluxed for 30 min. The cooled mixture was quenched with water and extracted with AcOEt. The organic phase was washed with a saturated aqueous NaCl solution, dried with anhydrous MgSO₄, and then concentrated in vacuo. The residue was purified by SiO₂ column chromatography $(CH_2CI_2/EI_2O = 9/1)$ to give 3e (223 mg, 52%) as a pale yellow viscous oil. $[\alpha]_0^{26}$ -75.7 (c = 0.22, EtOH). IR (film): 1651 (C=N) cm⁻¹. ¹H-NMR (200MHz, CDCl₃): δ 0.96 and 1.02 (d, 3H x 2, J = 6.7 Hz, ⁱPr-Me), 1.32 and 1.33 (d, 3H x 2, J = 6.1 Hz, O'Pr-Me), 1.85 (m, 1H, 'Pr-CH), 4.03-4.16 (m, 2H, C4 and C5), 4.29-4.41 (m, 1H, C5), 4.52 (sept, 1H, J = 6.1 Hz, O'Pr-CH), 6.89-7.06 (m, 2H, ArH), 7.28-7.37 (m, 1H, ArH), 7.65 (dd, 1H, J = 8.1 and 2.0 Hz, ArH), ¹³C-NMR (50.3MHz, CDCl₃): δ 18.3 and 18.7 (Me x 2), 22.2 (OPr-Me x 2), 32.8 ('Pr-CH), 69.9 (C5), 72.1 (O'Pr-CH), 72.6 (C4), 116.0 (C3'), 120.0 (C1'), 120.6 (C5'), 131.2 (C6'), 131.6 (C4'), 157.0 (C2'), 163.0 (C2). MS: 248 (24, M+1), 232 (63), 218 (33), 204 (100), 189 (30), 162 (76), 146 (218), 134 (38), 121 (24), 107 (26). Anal. Calcd for C₁₅H₂₁NO₂: C; 72.84, H; 8.56, N; 5.66. Found: C; 72.69, H; 8.64, N; 5.84.
- (4S)- 2-(2'-"Butylphenyl)-4-is opropoxyoxazoline (3f). To a solution of 3d (220 mg, 1.0 mmol) in THF (10 ml) was added dropwise 2.0 M THF solution of "butylmagnesium chloride (0.60 ml, 1.2 mmol) at room temperature under a nitrogen atmosphere. After being stirred for 21 h, the solution was quenched with a saturated aqueous NaCl solution at 0°C and extracted with AcOEt. The organic phase was washed with a saturated aqueous NaCl solution, dried with anhydrous MgSO₄, and then concentrated in vacuo. The residue was purified by column chromatography (hexane/AcOEt = 95/5) to give 3f (170 mg, 69%) as colorless viscous oil. $[\alpha]_D^{27}$ -66.3 (c = 0.18, EtOH). IR (film): 1647 (C=N) cm⁻¹. H-NMR (200MHz, CDCl₃): δ 0.92 (t, 3H, J = 7.1 Hz, CH₂CH₂CH₂CH₂CH₃), 0.96 and 1.04 (d, 3H x 2, J = 6.7 Hz, I Pr-Me), 1.26-1.65 (m, 4H, I = 7.1 Hz, CH₂CH₂CH₂CH₃), 1.72-1.92 (m, 1H, I Pr-CH), 2.83-3.09 (m, 2H, I = 7.1 Hz, CH₂CH₂CH₂CH₃CH₃), 4.01-4.15

(m, 2H, C4 and C5), 4.28-4.42 (m, 1H, C5), 7.14-7.36 (m, 3H, ArH), 7.70-7.74 (m, 1H, ArH). ¹³C-NMR (50.3MHz, CDCl₃): δ 14.0 (CH₂CH₂CH₂CH₃), 18.5 and 18.9 ('Pr-Me x 2), 22.8 (CH₂CH₂CH₂CH₃) 33.1 ('Pr-CH), 33.9 (CH₂CH₂CH₂CH₃), 34.1 (CH₂CH₂CH₂CH₃), 69.7 (C5), 73.2 (C4), 125.5 (C5'), 127.4 (C1'), 130.1 (C3'), 130.3 (C4'+C6'), 143.5 (C2'), 163.9 (C2). MS: 246 (7, M*+1), 245 (38, M*), 216 (100), 202 (41), 131 (16). Anal. Calcd for C₁₆H₂₃NO₂: C; 78.32, H; 9.45, N; 5.71. Found: C; 78.43, H; 9.44, N; 5.89.

Synthesis of dialkoxyphenyloxazolines 3h, ent-3h, and 3i. General procedure:

(4S)- 2-(2', 6'-Dimethoxyphenyl)-4-isopropyloxazoline (3h). 3h and 18a were prepared according to the Denmark's procedure. To a mixture of 2,6-dimethoxybenzoylchloride 17a (895 mg, 4.5 mmol), Et₁N (0.93 ml, 6.7 mmol) and CH₂Cl₂ (5 ml) was added a solution of (S)-(+)-2-amino-3-methyl-1-butanol (460 mg, 4.5 mmol) in CH₂Cl₂ (2 ml) at 0°C. After being stirred at room temperature for 12 h, the mixture was quenched with a saturated aqueous NaHCO₃ solution and extracted with AcOEt. The organic layer was washed with a saturated aqueous NaCl solution, dried with anhydrous Na₂SO₄, and then concentrated in vacuo. The residue was purified by SiO_2 column chromatography (hexane/AcOEt = 1/5) to give 18a (614 mg, 51%). To a solution of the amide 18a (614 mg, 2.0 mmol) in CH₂Cl₂ (5 ml) were added Et₃N (0.77 ml, 5.5 mmol) and methanesulfonyl chloride (0.21 ml, 2.8 mmol) at 0°C. After being stirred at room temperature for 12 h, the mixture was quenched with a saturated aqueous NH₄Cl solution and the CH₂Cl₂ layer was separated. The water layer was extracted with CH₂Cl₂. The combined extracts were washed with a saturated aqueous NaCl solution, dried with anhydrous Na₂SO₄, and then concentrated in vacuo. The residue was purified by SiO₂ column chromatography (hexane/AcOEt = 2/1) to give 3h (551 mg, 96%) as a pale yellow viscous oil. $[\alpha]_D^{24}$ -50.7 (c = 1.21, CHCl₃). IR (KBr): 1674 (C=N) cm⁻¹. ¹H-NMR (200MHz, CDCl₃): δ 1.00 and 1.03 (d, 3H x 2, J = 6.8Hz, 'Pr-Me), 1.81-2.01 (m, 1H, 'Pr-CH), 3.81 (s, 6H, OMe x 2), 4.10-4.27 (m, 2H, C4 and C5), 4.33-4.44 (m, 1H, C5), 6.55 (d, 2H, J = 8.4 Hz, C3' and C6'), 7.29 (t, 1H, J = 8.4 Hz, C4'). ¹³C-NMR (67.8MHz, CDCl₃): δ 17.8 and 18.4 (Me x 2), 32.2 (Pr-CH), 55.9 (OMe x 2), 69.5 (C5), 72.5 (C4), 103.7 (C3' and C5'), 107.9 (C1'), 131.2 (C4'), 158.7 (C2' and C6'), 159.8 (C2). MS: 249 (25, M*), 206 (100), 178 (67), 165 (15), 163 (14). Anal. Calcd for C₁₄H₁₉NO₂·1/10H₂O: C; 66.96, H; 7.71, N; 5.58. Found: C; 66.77, H; 7.64, N; 5.50.

(4R)-2-(2', 6'-Dimethoxyphenyl)-4-isopropyloxazoline ent-(3h). ent-3h was prepared from 2,6-dimethoxybenzoylchloride 17a (700 mg, 3.5 mmol) and (R)-(-)-2-amino-3-methyl-1-butanol (360 mg, 3.5 mmol) via 18b by the same procedure described above. a pale yellow viscous oil. $[\alpha]_D^{24}$ +49.0 (c = 1.10, CHCl₃).

(4S)-2-(2', 6'-Diis opropoxy pheny l)-4-is opropy loxazoline (3i). 3i was prepared from 2,6-diisopropoxybenzoylchloride 17b (400 mg, 1.6 mmol) and (S)-(+)-2-amino-3-methyl-1-butanol (160 mg, 1.6 mmol) via 18c by the same procedure described for 3h. The residue obtained was purified by SiO₂ column chromatography (hexane/AcOEt = 5/1) to give 3i (371 mg, 76%) as a pale yellow viscous oil. [α]_D²⁵ -54.6 (c = 1.28, CHCl₃). IR (KBr): 1672 (C=N) cm⁻¹. ¹H-NMR (200MHz, CDCl₃): δ 1.00 and 1.03 (d, 3H x 2, J = 6.8 Hz, ⁱPr-Me), 1.30 (d, 6H, J = 6.0 Hz, O'Pr-Me), 1.82-2.02 (m, 1H, ⁱPr-CH), 4.07-4.21 (m, 2H, C4 and C5), 4.26-4.41 (m, 1H, C5), 4.51 (sept, 2H, J = 6.0 Hz, O'Pr-CH), 6.60 (d, 2H, J = 8.4 Hz, C3' and C6'), 7.20 (t, 1H, J = 8.4 Hz, C4'). ¹³C-NMR (67.8MHz, CDCl₃): δ 18.2 and 18.6 ('Pr-Me x 2), 22.1 (O'Pr-Me x 2), 32.3 ('Pr-CH), 69.4 (C5), 71.2 (O'Pr-CH), 72.5 (C4), 106.4 (C3' and C5'), 111.2 (C1'), 130.6 (C4'), 155.6 (C2' and C6'), 160.1 (C2). MS: 305 (5, M*), 290 (91), 262 (35), 247 (60), 221 (33), 204 (47), 178 (100), 163 (98), 150 (44), 135 (46), 121 (10). Anal. Calcd for C₁₈H₂₇NO₂·1/10H₂O: C; 70.37, H; 8.92, N; 4.56. Found: C; 70.38, H; 8.74, N; 4.53.

Cu-catalyzed 1,4-addition. Typical procedure (Table 2, entry 6) is as follows: A solution of CuOTf•1/2C₆H₆ complex (1.9 mg, 7.5 μ mol) and 3h (7.5 mg, 0.030 mmol) in THF (2 ml) was stirred at room temperature for 30 min. After a solution of 1 (20.4 mg, 0.15 mmol) in THF (1 ml) was added to the mixture, 1.0 M solution of Me₃Al in hexane (0.30 ml, 0.30 mmol) and TBDMSOTf (0.04 ml, 0.18 mmol) were successively added to the reaction mixture at 0°C and the whole was stirred at the same temperature for 1 h. Then the mixture was quenched with 5% HCl aqueous solution at 0°C and extracted with AcOEt. The extract was washed with a saturated aqueous NaCl solution, dried with anhydrous MgSO₄, and then concentrated in

vacuo. The residue was purified by SiO₂ column chromatography (hexane/AcOEt = 9/1) to give 2 (20.0 mg, 88% isolated yield) as a colorless oil. The ee was determined to be 68% by chiral HPLC analysis (Daicel CHIRALPAK AS, hexane/2-propanol = 7/3, flow rate 0.5 ml/min, column temperature 35°C, retention time: (+)-2 = 43.0 min, (-)-2 = 56.2 min).

REFERENCES AND NOTES

- a) Jones, P. G.; Weinmann, H.; Winterfeldt, E. Angew. Chem. Int. Ed. Engl. 1995, 34, 448-450. b)
 Takano, S.; Moriya, M.; Higashi, Y.; Ogasawara, K. J. Chem. Soc., Chem. Commun. 1993, 177-178.
 c) Hiroya, K.; Kurihara, Y.; Ogasawara, K. Angew. Chem. Int. Ed. Engl. 1995, 34, 2287-2289. d)
 Clark, D. A.; Riccardis, F. D.; Nicolaou, K. C. Tetrahedron 1994, 50, 11391-11426.
- Reviews for recent advances in the synthsis of spirovetivone sesquiterpenes: Murai, A. Yuki Gosei Kagaku Kyokaishi 1981, 39, 893-908.
 The first Synthsis of (-)-solavetivone: Hwu, J. R.; Wetzel, J. M. J. Org. Chem. 1992, 57, 922-928.
- 3. Conte, M. R.; Fattorusso, E.; Lanzotti, V.; Magno, S.; Mayol, L. Tetrahedron, 1994, 50, 13469-13476.
- Reviews for catalytic asymmetric conjugate addition reaction: Noyori, R. Asymmetric Catalysis in Organic Synthesis John Wiley and Sons, Inc., New York, 1994; Rossiter, B. E.; Swingle, N. M. Chem. Rev. 1992, 92, 771-806 and references cited therein; Tomioka, K.; Synthesis, 1990, 541-549.
 a) van Klaveren, M.; Lambert, F.; Eijkelkamp, D. J. F. M.; Grove, D. M.; van Koten, G. Tetraherdon Lett. 1994, 35, 6135-6138. b) Zhou, Q.-L.; Pfaltz, A. Tetrahedron 1994, 50, 4467-4478. c) Swingle, N. M.; Reddy, K. V.; Rossiter, B. E. Tetrahedron 1994, 50, 4455-4466. d) Spescha, M.; Rihs, G. Helv. Chim. Acta 1993, 76, 1219-1230.
- Kanai, M.; Tomioka, K. Tetrahedron Lett. 1995, 36, 4273-4274 and 4275-4278. Wang, Y.; Gladysz, J. A. J. Org. Chem. 1995, 60, 903-909. Kanai, M; Tomioka, K. Tetrahedron Lett., 1994, 35, 895-898. Alexakis, A.; Frutos, J.; Mangeney, P. Tetrahedron: Asymmetry 1993, 4, 2427-2430.
- Kabbara, J.; Flemming, S.; Nickisch, K.; Neh, H.; Westermann, J. Tetrahedron 1995, 51, 743-754.
 Westermann, J.; Nickisch, K. Angew. Chem. Int. Ed. Engl. 1993, 32, 1368-1370.
- a) Sprinz, J.; Kiefer, M.; Helmchen, G. Tetrahedron Lett. 1994, 35, 1523-1526. b) Dawson, G. J.; Frost, C. G.; Martin, C. J.; Williams, J. M. J.; Coote, S. J. Tetrahedron Lett. 1993, 34, 7793-7796. c) Baldwin, I. C.; Williams, J. M. J.; Beckett, R. P. Tetrahedron: Asymmetry 1995, 6, 1515-1518. d) Allen, J. V.; Coote, S. J.; Dawson, G. J.; Frost, C. G.; Martin, C. J.; Williams, J. M. J. J. Chem. Soc. Perkin Trans. 1 1994, 2065-2072.
- 8. A Letter for Enantioselective Cu-Catalyzed 1,4-Addition of Me₃Al to a 4,4-Disubstituted Cyclohexa-2,5-dienone Novel Effects of R₃SiOTf on Enantioselectivities Takemoto, Y.; Kuraoka, S.; Hamaue, N.; Iwata, C. *Tetrahedron: Asymmetry* **1996**, 7, 993-996.
- 9. Cook, K. L.; Waring, A. J. J. Chem. Soc., Perkin Trans. 1 1973, 529-537.
- 10. Toda, F.; Tanaka, K. Tetrahedron Lett. 1988, 29, 551-554.
- 11. Balm, C.: Weichhardt, K.; Zehnder, M.; Ranff, T. Chem. Ber. 1991, 124, 1173-1180.
- 12. Methylation of phenolic OH: Johnstone, R. A. W.; Rose, M. E. Tetrahedron 1979, 35, 2169-2173.
- 13. Allen, J. V.; Dawson, G. J.; Frost, C. G.; Williams, J. M. J.; Coote, S. J. Tetrahedron 1994, 50, 799-

- 808. Coote, S. J.; Dawson, G. J.; Frost, C. G.; Williams, J. M. J. Synlett, 1993, 509-510.
- 14. Meyers, A. I.; Gabel, R.; Mihelich, E. D. J. Org. Chem. 1978, 43, 1372-1379.
- Denmark, S. E.; Nakajima, N.; Nicaise, O. J. -C.; Faucher, A.-M.; Edwards, J. P. J. Org. Chem. 1995, 60, 4884-4892.
- 16. Richards, C. J.; Damalidis, T.; Hibbs, D. E.; Hursthouse, M. B. Synlett, 1995, 74-76.
- 17. Bertz, S. H.; Miao, G.; Rossiter, B. E.; Snyder, J. P. J. Am. Chem. Soc. 1995, 117, 11023-11024. Lipshutz, B. H.; Hackmann, C. J. Org. Chem. 1994, 59, 7437-7444.
- 18. Takemoto, Y.; Kuraoka, S.; Ohra, T.; Yonetoku, Y.; Iwata, C. J. Chem. Soc., Chem. Commun., in press.
- 19. Itsuno, S.; Nakano, M.; Miyazaki, K.; Masuda, H.; Ito, K.; Hirao, A.; Nakahama, S. *J. Chem. Soc. Perkin Trans. I* **1985**, 2039-2044.
- 20. Doyle, F. P.; Hardy, K.; Nayler, J. H. C.; Soulal, M. J.; Stove, E. R.; Waddington, H. R. J. J. Chem. Soc. 1962, 1453-1458.
- 21. Sheldrick, G. M., Acta. Crystallogr., Sect. A, 1990, 46, 467-473.
- 22. Sheldrick, G. M., *SHELXL-93* program for crystal structure refinement, University of Göttingen, Germany, 1993.

(Received in Japan 7 August 1996; accepted 19 September 1996)